

Description

La carte BXJ00 est une plate-forme destinée à l'acquisition/génération de signaux analogiques et numériques en temps réel.

Un bootloader associé à un logiciel d'interface utilisateur permet le chargement de programmes sans matériel additionnel. Les formats de fichier supportés sont .scb et .hex. Pour faciliter et réduire le temps d'intégration, plusieurs programmes aux fonctionnalités génériques sont fournis avec la carte. Ils sont téléchargeables librement dans notre librairie. Pour des besoins spécifiques, veuillez nous-contacter.

Les principaux avantages fournis par la carte sont les suivants :

- Un bootloader qui permet la mise à jour du firmware simplement même sur des produits déjà déployés.
- 2. Jusqu'à 60 entrées/sortie numériques
- Jusqu'à 7 entrées analogiques dont 3 réservées à des mesures différentielles et 4 réservées à des mesures en mode commun
- 4. 2 générateurs de courant constant
- En option, 2 sorties de puissance à collecteur ouvert.

Caractéristiques générales

La carte BJX00 V2.0 est basée sur un microcontrôleur PIC18F258 associé à 3 I/O expanders MCP23S17 qui permettent d'étendre le nombre d'entrées/sorties numériques disponible.

Les interfaces disponibles sur la carte BXJ00 sont:

- 60 entrées/sorties numériques avec résistances série de 1kΩ
- 3 entrées analogiques différentielles
- 4 entrées analogiques en mode commun
- 2 sources de courant
- En option, 2 sorties de puissance à transistors à collecteur ouvert

Dimensions : 48,2mm x 103mm

Alimentation: USB bus

Réf. connecteurs: 90130-1230, 90130-1226, 90130-1224, 90130-1220, 90130-1214 (fabricant MOLEX)

Horloge

Un quartz de 4MHz est implémenté sur la carte.

Bus SPI

Le microcontrôleur et les I/O expanders communiquent entre eux en utilisant le protocole SPI avec les caractéristiques suivantes :

- PIC18F2458 en maître
- 1 signal Chip Select (CS0 sur la broche RC6)
- adresse Hardware des I/O expanders:
 - o IOE1 = '001'
 - O IOE2 = '010'
 - o IOE3 = '100'

Des composants externes peuvent être addressés en utilisant le signal Chip Select CS1 (broche RA4) et les signaux SPI accessibles sur le connecteur CON2.

Pour plus d'information sur les échanges SPI, veuillez vous referrer aux documentations suivantes:

- MICROCHIP MCP23017/MCP23S17datasheet, DS21952B, 2007
- MICROCHIP PIC18F2458 datasheet, DS39887C, 2009

Caractéristiques électriques

Entrées analogiques différentielles

Entrées analogiques différentielles			
Paramètres	AN0/AN1	AN2	
Gain	1,494	293.308	
Bande passante (-3dB)	700kHz	10kHz	
Rdiff (without input filter)	440kΩ	440kΩ	
Rin (without input filter)	220k	220kΩ	
Tension maximum en entrée	+5,5V	+5,5V	

<u>Note</u>: pour interfacer un capteur de type loadcell, il est recommandé d'utiliser un gain élevé. La voie AN2 peut être utilisée pour ce type d'interface.

Réglage du gain :

Le gain des entrées analogiques différentielles est réglable en utilisant une seule résistance externe (Rg). La résistance Rg doit être choisie en utilisant l'équation suivante:

$$Gain = 1 + \frac{49.4 \, k \, \Omega}{Rg}$$

Le gain maximum est un gain de 1000.

Réglage du filtre d'entrée :

Le filtre limite la bande passante selon l'équation suivante :

$$FilterfreqDiff = \frac{1}{\frac{2\pi RcRd}{Rc + Rd}}*(2Cd + Cc)$$
$$FilterfrqCM = \frac{1}{\frac{2\pi RcRd}{Rc + Rd}*Cc}$$

La capacité Cd filtre les signaux différentiels et la capacité Cc les signaux différentiels et de mode commun. Cd doit être au moins supérieure ou égale à 10 x Cc. La bande passante maximum est 1MHz (pour un gain de 1)

Mode commun:

L'utilisation des entrées différentielles nécessite quelques précautions. Un réglage adéquat du mode commun permet d'optimiser la plage de tension en sortie des étages différentiels. Les figures ci-dessous représentent la tension de sortie des étages différentiels en fonction du mode commun (extrait de la datasheet IN826, Texas Instrument).

Si des tensions négatives et positives doivent être mesurées, une référence de tension peut être ajoutée à la carte sur demande. Par défaut, V_{REF} = 0V.

Entrées analogiques en mode commun

Entrées analogiques en mode commun		
Paramètres	AN3/AN4/AN8/AN9	
Gain	1	
Bande passante	185Hz	
Rin	100kΩ	
Tension	+5,5V	
maximum en		
entrée		

Réglage du gain :

Le gain des entrées analogiques en mode commun est fixé par 2 résistances (Rb and Ra). Les valeurs de Ra et Rb doivent être choisies en utilisant l'équation suivante

$$Gain = 1 + \frac{Rb}{Ra}$$

Réglage du filtre d'entrée :

Le filtre limite la bande passante selon l'équation suivante :

$$Filterfreq(Hz) = \frac{1}{2\pi RiCi}$$

Réglage de la résistance d'entrée:

La résistance d'entrée est égale à Rin

Conversion analogique / numérique

Conversion analogique/numérique		
Paramètres	Max	
Résolution	12bits	
Vitesse de	50kSample/s	
conversion		

Note: le microcontrôleur devra être reconfiguré en consequence pour atteindre la vitesse de conversion maximum.

Générateur de courant constant

Générateurs de courant constant		
Paramètres	I1/I2	
Courant de	318µA +/-5%	
sortie		
Charge	10kΩ	
maximum		

Réglage du courant de sortie:

Le courant généré est réglable par modification de la résistance Rs selon l'équation suivante:

$$OutputCurrent = \frac{1240}{Rs} mA$$

Entrées numériques

Entrées numériques			
Paramètres	Min	Max	
Courant de fuite		10µA	
VIH		4,4V	
VIL	0,9V		
Tension	Vss - 0.5V	Vdd + 0.5V	
maximum et			
minimum en			
entrée			
Courant de	+/-10mA		
clamp maximum			
(VI < 0 or VI >			
VDD)			

Sorties numériques

Sorties numériques			
Paramètres	Min	Max	
VOH	3,8V		
VOL		0,6V	
Courant de	+/-10mA		
clamp maximum			
Courant	5mA		
maximum par			
broche			

Note: Des resistances de $1k\Omega$ sont placées en série sur les entrées/sorties des I/O expander.

En option, les sortie IOE3_B7 et IOE3_B6 peuvent être équipées de transistor de puissance montés en collecteur commun. Pour ne pas détruire les transistors, assurez-vous que ceux-ci travaillent bien dans la zone non destructive (cf. Figure 1)

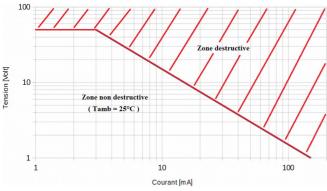


Figure 1: Délimintation de la zone de sécurité des sortie de puissance

Tension 4,5V 5,5V

Sortie alimentation

Alimentation en sortie			
Paramètres	Min	Max	
Tension de sortie	4,5V	5,5V	
Courant maximum par broche	3mA		
Courant maximum	100mA		

Température

Température de fonctionnement			
Paramètres	Min	Max	
Température	0°C	70°C	

Alimentation en entrée carte

Alimentation USB (Vdd) reference à la masse (Vss)		
Paramètres	Min	Max

Board pinout

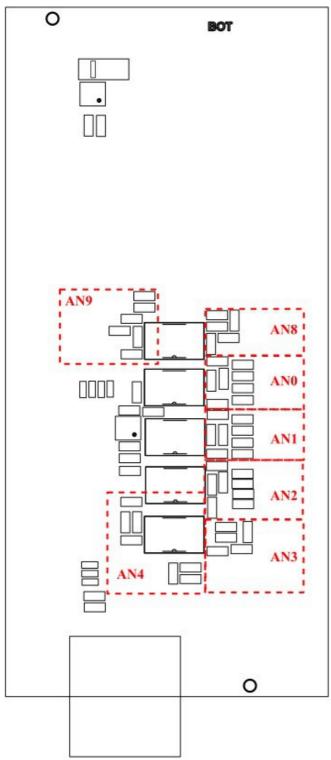

CON1		line	СО	N2
IOE3 A0	IOE3_A1	32	GND	GND
IOE3_A2	IOE3_A3	31	IOE3_B7	IOE3_B6
GND	GND	30	IOE3_B5	IOE3_B4
IOE3_A4	IOE3_A5	29	GND	GND
IOE3_A6	IOE3_A7	28	IOE3_B3	IOE3_B2
GND	GND	27	IOE3_B1	IOE3_B0
IOE2_A0	IOE2_A1	26	GND	GND
IOE2_A2	IOE2_A4	25	IOE2_B7	IOE2_B6
GND	GND	24	IOE2_B5	IOE2_B4
IOE2_A4	IOE2_A5	23	GND	GND
IOE2_A6	IOE2_A7	22	IOE2_B3	IOE2_B2
GND	GND	21	IOE2_B1	IOE2_B0
IOE1_A0	IOE1_A1	20	GND	GND
IOE1_A2	IOE1_A3	19	IOE1_B7	IOE1_B6
GND	GND	18	IOE1_B5	IOE1_B4
IOE1_A4	IOE1_A5	17	GND	GND
IOE1_A6	IOE1_A7	16	IOE1_B3	IOE1_B2
GND	GND	15	IOE1_B1	IOE1_B0
AN9	AN8	14	GND	GND
VCC	VCC	13	VCC	VCC
l1+	I1-	12	RE3/MCLR	RB7/PGD
AN0+	ANO-	11	RB6/PGC	RB5/PGM
GND	GND	10	GND	GND
VCC	VCC	9	VCC	VCC
12+	12-	8	RB4	RC0
AN1+	AN1-	7	RC1	RC2
GND	GND	6	GND	GND
VCC	VCC	5	VCC	VCC
AN2+	AN2-	4	RB0	RB1
GND	GND	3	RA4	RC7
VCC	VCC	2	GND	GND
AN3	AN4	1	VCC	VCC
		USB		

Table 1 Connecteurs de la carte BXJ00 V2.0

4/6

Board schematic

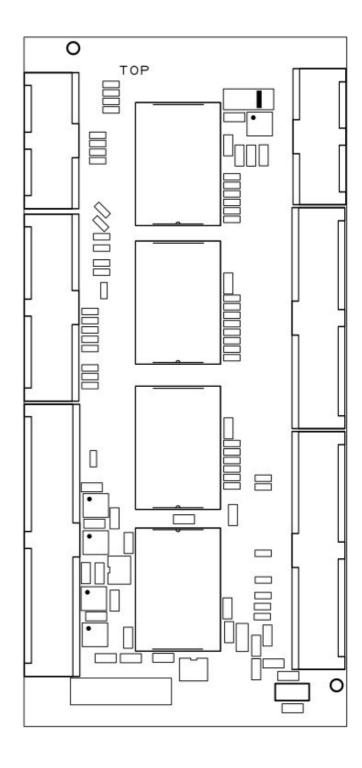


Figure 2 Vues de la carte BXJ00

Bootloader

Au démarrage, le bootloader vérifie si un firmware est déjà chargé en mémoire. Si un firmware est déjà présent, alors le bootloader lance ce firmware qui commence à l'adresse 0x0900 en mémoire flash. La plage d'adresse de 0x0000 à 0x08FF est réservée au bootloader.

Le bootloader peut être lancé des 2 manières suivantes:

- En forçant la broche RA4 à un niveau logique bas pendant la mise sous tension
- Par un saut inconditionnel à l'adresse 0x0002 demandé par le firmware.

Les bits de configuration ne sont pas programmables via le bootloader, le firmware doit donc être compatible avec la configuration suivante :

FCMEN	OFF
IESO	OFF
PWRT	OFF
BOR	OFF
VREGEN	ON
WDT	OFF
CCP2MX	ON
PBADEN	OFF
LPT1OSC	OFF
MCLRE	ON
STVREN	ON
LVP	OFF
XINST	OFF

Pour des informations complémentaires, veuillez vous référer à la documentation technique suivante :

 MICROCHIP PIC 18F2455/2550/4455/4550 datasheet, DS39632D 2007.

Caractéristiques du Bootloader

Fréquence d'utilisation : 48MHz

Broche d'activation du bootloader : RA4

Plage mémoire réservée : de 0x0000 à 0x08FF

Adresse initiale du programme: 0x0900 Adresse des vecteurs d'interruption

- Priorité basse 0x0908
- Priorité haute 0x0918

Fonctions disponibles dans l'espace du firmware :

• pour lancer le bootloader : goto 0x0002

- pour lancer l'application : goto 0x0004
- Pour obtenir le numéro de série du bootloader : call 0x083E
- Pour obtenir la version du bootloader : call 0x0006